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Problem Setup
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⚫ FSL aims to recognize novel queries based on a

few support images with the help of a large base

dataset for pre-training/meta-training. All images

are assumed to derive from a single domain.

⚫ CD-FSL extends FSL by assuming a domain gap

between the base classes and the novel classes.

⚫ We propose CDCS-FSL to further address the

domain gap within the novel classes (i.e.,

between the support and the query). Unlabeled

data from the new domain (aka. target domain)

are allowed for meta-training.

Framework

⚫ Strongly Augmented Bi-directional Prototypical Alignment (stabPA)
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Motivation

⚫ To address CDCS-FSL, we first need an aligned

feature space to alleviate the domain gap

between two domains. (Aligned)

⚫ Second, compact representations are desired to

learn a center-clustered feature space, so that a

small support set can better represent a new

class. (Compact)

• During meta-training: we perform stabPA on source and target domain images to learn a

compact and aligned feature space.

• The key of stabPA: align samples in one domain to the prototypes in the other domain.

The alignment is performed bi-directionally, such that the domain distance and the intra-

class variance can be reduced simultaneously.

• During meta-testing: the learned feature encoder is fixed and a new FC head is learned

on support images and tested on query images.

Benchmark

• We build a CDCS-FSL

benchmark on the DomainNet

dataset, where ‘r-p’ means

the support is from ‘real’ and

the query is from ‘painting’.

• When domain shift occurs,

the performance of

conventional FSL methods

drops very fast (↓21.19% on

average for the Meta-

Baseline).

• Our method learning a

compact and aligned feature

space can effectively alleviate

the domain shift problem and

reduce the performance drop

(↑5.66% compared with the

Meta-baseline).

⚫ DomainNet

Visualization

⚫ t-SNE
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⚫ Class Separability (ADR)

Ablation Study

Table 1: Ablation studies on DomainNet with 95% confidence interval.

Table 2: The influence of the number of unlabeled data and the number of base

classes that the unlabeled data contains. We report average accuracy on

DomainNet over 6 situations.


