Cross-Domain Cross-Set Few-Shot Learning via Learning
Compact and Aligned Representations
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Problem Setup ‘

Few-Shot Learning (FSL) Cross-Domain FSL (CD-FSL)

® Strongly Augmented Bi-directional Prototypical Alignment (stabPA)
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* During meta-training: we perform stabPA on source and target domain images to learn a
compact and aligned feature space.

® Class Separability (ADR)

Support

« The key of stabPA: align samples in one domain to the prototypes in the other domain.
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